skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carbone, Maurizio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The equation for the fluid velocity gradient along a Lagrangian trajectory immediately follows from the Navier–Stokes equation. However, such an equation involves two terms that cannot be determined from the velocity gradient along the chosen Lagrangian path: the pressure Hessian and the viscous Laplacian. A recent model handles these unclosed terms using a multi-level version of the recent deformation of Gaussian fields (RDGF) closure (Johnson & Meneveau,Phys. Rev. Fluids, vol. 2 (7), 2017, 072601). This model is in remarkable agreement with direct numerical simulations (DNS) data and works for arbitrary Taylor Reynolds numbers$$\textit {Re}_\lambda$$. Inspired by this, we develop a Lagrangian model for passive scalar gradients in isotropic turbulence. The equation for passive scalar gradients also involves an unclosed term in the Lagrangian frame, namely the scalar gradient diffusion term, which we model using the RDGF approach. However, comparisons of the statistics obtained from this model with DNS data reveal substantial errors due to erroneously large fluctuations generated by the model. We address this defect by incorporating into the closure approximation information regarding the scalar gradient production along the local trajectory history of the particle. This modified model makes predictions for the scalar gradients, their production rates, and alignments with the strain-rate eigenvectors that are in very good agreement with DNS data. However, while the model yields valid predictions up to$$\textit {Re}_\lambda \approx 500$$, beyond this, the model breaks down. 
    more » « less